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Abstract. In this work we study the convergence of an homogenization
problem for half-eigenvalues and Fuč́ık eigencurves. We provide quan-
titative bounds on the rate of convergence of the curves for periodic
homogenization problems.
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1. Introduction

Given a bounded interval (0, �) ⊂ R, we are interested in the asymptotic
behavior, as ε → 0, of the spectrum of the following family of asymmetric
elliptic problems

(Pε)

{
−u′′ = α mε(x)u+ − β nε(x)u−, x ∈ (0, �)
u(0) = u(�) = 0,

where (α, β) ∈ R
2
+, and the functions mε, nε ∈ L∞([0, �]) are positive and

uniformly bounded between two positive constants,

0 < a ≤ mε(x), nε(x) ≤ b < ∞. (1.1)

As usual, given a function u we denote by u± = max{0,±u} the positive and
negative parts of u.

Here we assume that there exist functions m0, n0 such that

mε
∗
⇀ m0 and nε

∗
⇀ n0 weakly* in L∞([0, �]).

It is well-known that in the case of periodic homogenization, where

mε(x) = m(x
ε ), nε(x) = n(x

ε )

for some �−periodic functions m,n ∈ L∞(R), we have that mε
∗
⇀ m0 and

nε
∗
⇀ n0 as ε → 0, where

m0 = m̄ :=
1
�

∫ �

0

m(x) dx and n0 = n̄ :=
1
�

∫ �

0

n(x) dx.
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We will show that the following limit equation is obtained:

(P0)

{
−u′′ = α m0u

+ − β n0u
− x ∈ (0, �)

u(0) = u(�) = 0,

in the sense that, from any sequence of weak solutions {(αεj
, βεj

, uεj
)}j≥1

of (Pε), with εj → 0, uniformly bounded in R
2 × H1

0 ([0, �]), we can extract
a strongly convergent subsequence in R

2 × L2([0, �]), weakly convergent in
R

2 × H1
0 ([0, �]), and the limit is a weak solution of equation (P0). Here, by

a weak solution of (Pε) with ε ≥ 0, we understand a pair (α, β) ∈ R
2
+ and

u ∈ H1
0 ([0, �]) satisfying∫ �

0

u′v′ dx =
∫ �

0

(
α mεu

+ − β nεu
−)

v dx, (1.2)

for any v ∈ H1
0 ([0, �]).

In order to study the convergence of the spectra of the problems (Pε)
to the spectrum of (P0), let us recall some known facts about the structure
of the so-called Fuč́ık spectrum, introduced in the ’70s by Dancer and Fuč́ık,
see [4,7]. For any ε ≥ 0 fixed, let us denote by

Σε = Σ(mε, nε) := {(α, β) ⊂ R
2 : there exists a nontrivial solution of (Pε)},

(1.3)

the Fuč́ık spectrum of problem (Pε). In the above mentioned references, it is
proved that the spectrum Σε has the structure

Σε = C±
0,ε ∪

⋃
k∈N

C±
k,ε,

where each C±
k,ε is a curve in R

2 for any k ≥ 0. The curves C±
0,ε are called the

trivial curves and are given by C+
0,ε = {λmε

1 }×R, C−
0,ε = R×{λnε

1 }, where λr
k

denotes the k−th eigenvalue of the Dirichlet laplacian in (0, �) with weight
r ∈ L∞([0, �]), namely{

−u′′ = λr(x)u, x ∈ (0, �)
u(0) = u(�) = 0.

(1.4)

Observe that any eigenfunction associated with λr
1 has constant sign.

The curves C+
k,ε (resp. C−

k,ε) with k ≥ 1 correspond to nontrivial solutions
having k internal zeros and positive (resp. negative) slope at the origin.

We have two curves for every k ∈ N. In the constant coefficient case, for
k even, both curves coincide but this is not true for general weights.

The curves C±
k,ε are not known explicitly for general weights mε, nε, and

only their asymptotic behavior as α → ∞ (or β → ∞) is known, see [15,16].
The study of homogenization problems for asymmetric eigenvalues is

not well understood nowadays. We cite the paper [13] of Malik where the
homogenization problem for a model of suspension bridges was studied. In
that work the author studies a model where the cable resists the expansion
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but does not resist compression. More recently, in [12], Li and Yan studied
the continuity of the eigenvalues λ(an, bn) of the problem

−(|u′|p−2u′)′ = λ|u|p−2u + an(x)|u+|p−2u+ − bn(x)|u−|p−2u−, x ∈ (0, �)

with homogeneous boundary conditions

c11u(0) + c12u
′(0) = 0 = c21u(�) + c22u

′(�),

and the convergence to the eigenvalues of

−(|u′|p−2u′)′ = λ|u|p−2u + a(x)|u+|p−2u+ − b(x)|u−|p−2u−, x ∈ (0, �)

with the same boundary conditions, where an ⇀ a and bn ⇀ b weakly in
Lγ([0, �]) for 1 ≤ γ < ∞.

Also, the behavior as ε → 0 of the first nontrivial curve in the Fuč́ık
spectrum for the p−Laplace operator in R

n for n ≥ 1 was obtained by the
third author in [17].

On the other hand, the homogenization of spectral problems in the
symmetric case have been widely studied in both the linear and quasilinear
cases. See for example [1–3,5,8–10,14] and the references therein.

In this work we prove the convergence of the eigenvalues of problem (Pε)
to the ones of problem (P0). Moreover, in the case of periodic homogenization
we obtain the rate of convergence whenever we restrict Σε and Σ0 to a line
through the origin, and we give explicit bounds depending on ε, k, and the
slope of the line.

Since the constant degenerates when the line approaches the axis, it is
convenient to denote, for any 0 < t < 1 by Kt a symmetric cone in the first
quadrant defined by

Kt := {(α, β) ∈ R+ × R+ : tα ≤ β ≤ t−1α}. (1.5)

Our main results are the following:

Theorem 1.1 (General convergence). Let {mε}ε>0 and {nε}ε>0 be two fami-
lies of weights satisfying (1.1) such that

mε
∗
⇀ m0 and nε

∗
⇀ n0

weakly* in L∞([0, �]) and let Σε be the associated Fuč́ık spectrum defined in
(1.3).

Let (αk,ε, βk,ε) ∈ Ck,ε ∩ Kt ⊂ Σε. Then, {(αk,ε, βk,ε)}ε>0 is bounded
in R

2 and if (αk,0, βk,0) is any accumulation point of {(αk,ε, βk,ε)}ε>0, then
(αk,0, βk,0) ∈ Ck,0 ∩ Kt ⊂ Σ0.

Moreover, if (αk,ε, βk,ε) ∈ C+
k,ε ∩ Kt, then (αk,0, βk,0) ∈ C+

k,0 and analo-
gous result for C−

k,ε.
Finally, if uε ∈ H1

0 ([0, �]) is an eigenfunction of (Pε) associated to
(αε, βε) normalized such that ‖uε‖2 = 1, then, there exists u0 ∈ H1

0 ([0, �])
and a sequence εj ↓ 0 such that uεj

⇀ u0 and u0 is an eigenfunction of (P0)
associated with (α0, β0).

In the case of periodic homogenization one can do better and obtain
an order of convergence. In order to do this one needs to select a point on
the curve of the spectrum Σε and follow that point as ε ↓ 0. This is done
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in the following way: given t > 0, there exists a unique λ±
k,t,ε such that

(λ±
k,t,ε, tλ

±
k,t,ε) ∈ C±

k,ε. Moreover,

C±
k,ε =

⋃
t>0

{(λ±
k,t,ε, tλ

±
k,t,ε)}.

Theorem 1.2 (Periodic homogenization). Assume that mε(x) = m(x
ε ) and

nε(x) = n(x
ε ) for some �−periodic functions m,n ∈ L∞(R) satisfying (1.1).

Then, we have the bound

|λ±
k,t,ε − λ±

k,t,0| ≤ C

(
k

�

)3

γ(t)ε,

where C depends only on the constants a, b in (1.1) and γ(t) = max{t−
3
2 , t

1
2 }.

The order of convergence for homogenization of different eigenvalue
problems were obtained in [2,6,8,17]. Let us recall that in [2,8] the prob-
lem was linear, and asymptotic expansions were used. On the other hand, in
[6,17] the proofs relayed on the variational structure of the problem. Here,
there are no variational characterization of the higher curves of the Fuč́ık
spectrum, nor linear arguments available, so the proofs are obtained by ex-
ploiting the nodal structure of the eigenfunctions.

Organization of the Paper

The paper is organized as follows: In Sect. 2 we prove the general convergence
result, Theorem 1.1, and in Sect. 3 we study the periodic oscillation case and
prove Theorem 1.2.

2. A General Convergence Result

In this section we prove our general convergence result, Theorem 1.1. We
begin with an even more general and, therefore, more vague, result on the
convergence of Fuč́ık eigenvalues.

Throughout this section, we will use the notation λr,I
1 to denote the

first eigenvalue of the Laplacian on the interval I with weight function r

complemented with homogeneous Dirichlet boundary conditions. That is, λr,I
1

is the first eigenvalue of {
−u′′ = λr(x)u in I

u = 0 on ∂I.

Let us recall that if the weight r(x) = constant = c, then λr,I
1 = λc,I

1 = π2

c|I|2 .

Theorem 2.1. Let mε and nε be two weight functions satisfying (1.1) and
assume that mεj

∗
⇀ m0, nεj

∗
⇀ n0 weakly* in L∞([0, �]). Let Σε (ε ≥ 0) be

the Fuč́ık spectrum given by (1.3).
If (αεj

, βεj
) ∈ Σεj

are such that (αεj
, βεj

) → (α0, β0) as j → ∞, then
(α0, β0) ∈ Σ0. Moreover, if uεj

∈ H1
0 ([0, �]) is an eigenfunction of (Pε) as-

sociated with (αεj
, βεj

) normalized such that ‖uεj
‖2 = 1, then, there exists
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u0 ∈ H1
0 ([0, �]) and a subsequence εji

↓ 0 such that uεji
⇀ u0 and u0 is an

eigenfunction of (P0) associated to (α0, β0).

Proof. Let uεj
∈ H1

0 ([0, �]) be an eigenfunction of (Pε) associated with
(αεj

, βεj
) and normalized such that ‖uεj

‖2 = 1.
Then, since (αεj

, βεj
) is bounded and since the weights mεj

, nεj
are

uniformly bounded, taking v = uεj
as a test function in (1.2) we get∫ �

0

|u′
εj

|2 dx = αεj

∫ �

0

mεj
(u+

εj
)2 dx + βεj

∫ �

0

nεj
(u−

εj
)2 dx

≤ C

∫ �

0

(u+
εj

)2 + (u−
εj

)2 dx = C‖uεj
‖22.

Therefore, there exists a subsequence that we still denote by εj ↓ 0, and u0 ∈
H1

0 ([0, �]) such that uεj
⇀ u0 weakly in H1

0 ([0, �]) and uεj
→ u0 uniformly

in [0, �]. These facts automatically imply that (u±
εj

)2 → (u±
0 )2 strongly in

L1([0, �]).
So, we can pass to the limit in the weak form of the equation, (1.2), to

obtain ∫ �

0

u′
0v

′ dx = α0

∫ �

0

m0u
+
0 v dx − β0

∫ �

0

u−
0 v dx,

for every v ∈ H1
0 ([0, �]). This finishes the proof. �

Let us now see that if we take a sequence {(αk,ε, βk,ε)}ε>0 ⊂ Ck,ε with
a fixed k ∈ N; then the sequence of eigenvalues remains uniformly bounded
as long as they are confined in a cone Kt.

Theorem 2.2. Given 0 < t < 1 let Kt be the cone defined in (1.5).
Let k ∈ N be fixed and consider (αk,ε, βk,ε) ∈ Ck,ε ∩ Kt. Then, we have

the bound

max{αk,ε, βk,ε} ≤ t−1π2k2

a�2
.

Proof. Let uk,ε ∈ H1
0 ([0, �]) be a eigenfunction of (Pε) associated with (αk,ε,

βk,ε) ∈ Ck,ε ∩ Kt. Then uk,ε has exactly k nodal domains. Therefore, there
exists at least one nodal domain, Iε, such that |Iε| ≥ �

k .
Assume that uk,ε > 0 in Iε (the other case can be treated similarly).

Therefore, uk,ε is a weak solution of{
−u′′

k,ε = αk,εmεuk,ε in Iε

uk,ε = 0 on ∂Iε.

So, αk,ε = λmε,Iε

1 . Now, by Sturm’s comparison Theorem, we get

αk,ε = λmε,Iε

1 ≤ λa,Iε

1 =
π2

a|Iε|2 ≤ π2k2

a�2
.

Since (αk,ε, βk,ε) ∈ Kt it follows that

βk,ε ≤ t−1αk,ε.

This completes the proof. �
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Finally, let us see that the nodal domains of an eigenfunction uk,ε of
(Pε) associated with (αk,ε, βk,ε) ∈ Ck,ε do not degenerate when we pass to
the limit ε ↓ 0 if the eigenvalues (αk,ε, βk,ε) are confined to a cone Kt.

Theorem 2.3. With the same notations and assumptions of the previous the-
orem, let (αk,ε, βk,ε) ∈ Ck,ε ∩ Kt and let uk,ε ∈ H1

0 ([0, �]) be an eigenfunction
of (Pε) associated with (αk,ε, βk,ε). Then, every nodal domain Iε ⊂ [0, �] of
uk,ε verifies the bound

|Iε| ≥ �

k

√
t
a

b
.

Moreover if we denote by Jε two consecutive nodal domains, we have the
bound

|Jε| ≥ �

k

√
a

b
(1 +

√
t).

Proof. Assume that uk,ε > 0 in Iε (the other case is analogous). Arguing
as in the proof of Theorem 2.2, we have that αk,ε = λmε,Jε

1 . So, by Sturm’s
comparison Theorem,

αk,ε = λmε,Jε

1 ≥ λb,Jε

1 =
π2

b|Iε|2 .

Now, using the bound for αk,ε given in Theorem 2.2, we deduce

π2

b|Iε|2 ≤ αk,ε ≤ t−1π2k2

a�2
,

and the result follows.
Let now I+ε and I−

ε be two consecutive nodal domains, such that uk,ε > 0
in I+ε and u−

k,ε < 0 in I−
ε . We can assume, without loss of generality, that

αk,ε ≤ βk,ε. Then, from Theorem 2.2, we have that

αk,ε ≤ π2k2

a�2
and βk,ε ≤ t−1π2k2

a�2
.

Then, arguing as in the first part of the proof, we obtain that

|I+ε | ≥ �

k

√
a

b
and |I−

ε | ≥ �

k

√
t
a

b
.

The result follows observing that |Jε| = |I+ε | + |I−
ε |.

With the help of Theorems 2.1, 2.2 and 2.3, the proof of Theorem 1.1
follows easily:

Proof of Theorem 1.1. It only remains to see that if Ck,ε 
 (αk,εj
, βk,εj

) →
(αk,0, βk,0) as j → ∞, then (αk,0, βk,0) ∈ Ck,0. This will follow if we show
that an associated eigenfunction uk,0 of (P0) associated with (αk,0, βk,0) has
k nodal domains.

But, from Theorem 2.1, we know that uk,εj
⇀ uk,0 weakly in H1

0 ([0, �]),
where uk,εj

is an eigenfunction of (Pε) associated with (αk,εj
, βk,εj

) and uk,0

is an eigenfunction of (P0) associated with (αk,0, βk,0). Therefore, we know
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that uk,0 has only finitely many zeroes and then from Theorem 2.3 we deduce
that uk,0 has exactly k nodal domains.

This completes the proof. �

3. An Alternative Formulation

In order to prove the convergence result for periodic homogenization, Theo-
rem 1.2, it is convenient to consider the following equivalent problem:{

−u′′ = λ(m(x)u+ − tn(x)u−) x ∈ (0, �)
u(0) = u(�) = 0,

(3.1)

where t > 0 is a fixed value. The values of λ ∈ R for which (3.1) has a non-
trivial solution u are called half-eigenvalues, while the corresponding solutions
u are called half-eigenfunctions. Problem (3.1) has a positively homogeneous
jumping nonlinearity, and its spectrum is defined as the set

Σt(m,n) := {λ ∈ R : (3.1) has non-trivial solution u}.

The set Σt(m,n) is divided into two subsets Σt(m,n) = Σ+
t (m,n) ∪

Σ−
t (m,n) as

Σ+
t (m,n) := {λ ∈ Σt(m,n) : u′

λ(0) > 0},

Σ−
t (m,n) := {λ ∈ Σt(m,n) : u′

λ(0) < 0},

where uλ is an eigenfunction of (3.1) associated with λ.
It is shown in [11] that for any t > 0 both sets Σ±

t (m,n) consist in a
sequence converging to +∞. We denote this sequence by {λ±

k,t}k∈N.

Observe that λ+
1,t = λ

m,[0,�]
1 and λ−

1,t = λ
tn,[0,�]
1 . Moreover, each eigenval-

ue has a unique associated eigenfunction normalized by ±u′(0) = 1 and the
eigenfunction corresponding to λ±

k,t has precisely k nodal domains on (0, �),
and k + 1 simple zeros in [0, �]. See [11] for a proof of these facts.

We can rewrite problems (Pε) and (P0) by taking λε = αε and βε = tαε,
and we obtain the following problems:

(P t
ε)

{
−u′′ = λ(mε(x)u+ − tnε(x)u−) x ∈ (0, �)
u(0) = u(�) = 0,

for ε ≥ 0.
We denote the eigenvalues of (P t

ε) by {λ±
k,t,ε}k∈N.

Now, Theorem 1.1 trivially implies the following:

Theorem 3.1. Let {mε}ε>0 and {nε}ε>0 be two families of weights in L∞

([0, �]) satisfying (1.1). Assume, moreover that mε
∗
⇀ m0 and nε

∗
⇀ n0 weak-

ly* in L∞([0, �]) for some limit weights m0 and n0.
Let us denote by {λ±

k,t,ε}k∈N the eigenvalues of (P t
ε) for ε ≥ 0. Then

lim
ε→0

λ±
k,t,ε = λ±

k,t,0.

Now we specialize to the periodic case, and obtain the following refine-
ment:
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Theorem 3.2. In addition to the assumptions of Theorem 3.1, assume that
mε(x) = m(x

ε ) and nε(x) = n(x
ε ) for some �−periodic functions m,n ∈

L∞(R). Then, for 0 < t < 1,

|λ±
k,t,ε − λ±

k,t,0| ≤ C

(
k

�

)3

t−
3
2 ε,

where C depends only on a, b in (1.1).

Observe that Theorem 1.2 follows directly from Theorem 3.2. In fact,
Theorem 3.2 is Theorem 1.2 in the case 0 < t < 1 and the case where t > 1
follows from this one by symmetry. To be precise, if t > 1 and uε is an
eigenfunction associated with λ±

k,t,ε, we denote vε = −uε and so it verifies

{
−v′′

ε = tλ±
k,t,ε(nεv

+
ε − t−1mεv

−
ε ) in (0, �)

v(0) = v(�) = 0.

Therefore, from Theorem 3.2 we have the estimate

|tλ±
k,t,ε − tλ±

k,t,0| ≤ C

(
k

�

)3

t
3
2 ε,

and Theorem 1.2 follows directly from this former inequality.
For the proof of Theorem 3.2, we need the order of convergence of the

nodal domains of the eigenfunctions. We will perform this task in a series of
lemmas:

Lemma 3.3. Let (λ±
k,t,ε, uk,t,ε) be an eigenpair of (P t

ε). We denote by {I+j,ε}j ∪
{I−

i,ε}i the nodal domains of uk,t,ε, that is each I±
l,ε is an open connected,

pairwise disjoint intervals, such that

[0, �] =
⋃
j

I+j,ε ∪
⋃
i

I−
i,ε,

and uk,t,ε > 0 on I+j,ε, uk,t,ε < 0 on I−
i,ε.

Then, ||I+j,ε| − |I+l,ε|| < 2ε and ||I−
i,ε| − |I−

l,ε|| < 2ε

Proof. We make the proof for the positive nodal domains {I+j,ε}j . The other
one is analogous.

First, let j0 be such that |I+j0,ε| ≤ |I+j,ε| for any j.
Assume that there exists j such that |I+j,ε| > |I+j0,ε| + 2ε. Then, there

exists an integer h ∈ Z such that hε + I+j0,ε ⊂ I+j,ε.
Now, if we denote

vε(x) =

{
uk,t,ε(x − hε) if x ∈ I+j0,ε + hε

0 elsewhere,
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then vε ∈ H1
0 (I+j,ε), and so

λ+
k,t,ε = λ

mε,I+
j,ε

1 = inf
v∈H1

0 (I
+
j,ε)

∫
I+

j,ε
(v′)2 dx∫

I+
j,ε

mεv2 dx

≤
∫

I+
j,ε

(v′
ε)

2 dx∫
I+

j,ε
mεv2

ε dx

=

∫
I+

j0,ε
(u′

k,t,ε)
2 dx∫

I+
j0,ε

mεu2
k,t,ε dx

= λ+
k,t,ε,

where we have used the periodicity of the weight mε. This shows that vε is

an eigenfunction associated with λ
mε,I+

j,ε

1 , but this is a contradiction since vε

vanishes in a set of positive measure.
The proof is complete. �
The following elementary lemma will be most useful:

Lemma 3.4. Let M ∈ R and K ∈ N. Assume that for every ε > 0, there
exists {aε

i }K
i=1 ⊂ R, such that

K∑
i=1

aε
i = M and |aε

i − aε
j | < ε, for every 1 ≤ i, j ≤ K.

Then ∣∣∣∣aε
i − M

K

∣∣∣∣ < ε, for every 1 ≤ i ≤ K.

Proof. Let i0 = i0(ε) ∈ {1, . . . , K} be such that aε
i0

≤ aε
i for every 1 ≤ i ≤ K.

Then

Kaε
i0 ≤

K∑
i=1

aε
i = M,

and so aε
i0

≤ M
K . Therefore, for any 1 ≤ i ≤ K,

aε
i < aε

i0 + ε ≤ M

K
+ ε.

On the other hand, if we now take i1 = i1(ε) ∈ {1, . . . , K} such that aε
i1

≥ aε
i

for every 1 ≤ i ≤ K, then

Kaε
ii

≥
K∑

i=1

aε
i = M ;

thus aε
i1

≥ M
K . Hence, for any 1 ≤ i ≤ K,

aε
i ≥ aε

i1 − ε ≥ M

K
− ε.

The lemma is proved. �
Lemma 3.3 together with Lemma 3.4 implies the following corollary:
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Corollary 3.5. Let (λ±
k,t,ε, uk,t,ε) be an eigenpair of (P t

ε). We denote by {I+j,ε}j

∪ {I−
i,ε}i the nodal domains of uk,t,ε. Then∣∣∣∣|I+j,ε ∪ I−

j,ε| − 2�

k

∣∣∣∣ ≤ 4ε.

Proof. Assume first that k is even. So k = 2n for some n ∈ N. Then, the num-
ber of positive nodal domains equals the number of negative nodal domains
and both equal n. Therefore,

� =
n∑

j=1

|I+j,ε| +
n∑

j=1

|I−
j,ε| =

n∑
j=1

|I+j,ε ∪ I−
j,ε|.

Let us call aε
j = |I+j,ε ∪ I−

j,ε|, and by Lemma 3.3 we have that |aε
j − aε

i | < 4ε.
Hence, we can invoke Lemma 3.4 and conclude the desired result.

If now k is odd, we consider the problem in [−�, �] and extend uk,t,ε by
odd reflexion and so we end up with a even number of positive and negative
nodal domains. We apply the first part of the proof and from that the result
follows. We leave the details to the reader. �

Remark 3.6. Observe that, since m0 and n0 are constant functions, it holds
that |I+j,0 ∪ I−

j,0| = 2�
k . See [7].

The other key ingredient in the proof of Theorem 3.2 is the following
result due to [17], recently improved in [18]:

Theorem 3.7 ([18], Theorem 1.2). Under the above assumptions and nota-
tions, it holds that

|λ±
2,t,ε − λ±

2,t,0| ≤ Cεt−
3
2 , (3.2)

where C is a constant depending only on the bounds a, b in (1.1).

Remark 3.8. In [17] the obtained bound is slightly worse than (3.2). In fact,
is was proved in [17, Theorem 4.2] that

|λ±
2,t,ε − λ±

2,t,0| ≤ C ′εt−2,

with C ′ depending also on a, b.

With all of these preliminaries, we can now prove the main result of the
section:

Proof of Theorem 3.2. Let uk,t,ε be an eigenfunction of (P t
ε) associated with

λ+
k,t,ε, for ε ≥ 0. The case of λ−

k,t,ε is completely analogous.
Let Jε = I+1,ε ∪ I−

1,ε be the union of the first two nodal domains of uk,t,ε.
Let us denote Jε = (0, cε). Observe that uk,t,ε > 0 in Iε for ε ≥ 0 and that,
by Theorem 2.3, we have the bound

cε ≥ �

k

√
a

b
(1 +

√
t). (3.3)

Arguing as in Theorem 2.2, we deduce that for any ε ≥ 0,

λ+
k,t,ε = λmε,tnε,Jε

2 , (3.4)
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where λmε,tnε,Jε

2 is the second eigenvalue of (P t
ε) in the interval Jε.

Performing a change of variables is easy to see that

c2ελ
mε,tnε,Jε

2 = λ
mε′ ,tnε′ ,[0,1]
2 , (3.5)

where ε′ = ε
cε

. Observe that from (3.3) it follows that ε′ → 0.
Now, using Theorem 3.7 we obtain that∣∣∣λmε′ ,tnε′ ,[0,1]

2 − λ
m0,tn0,[0,1]
2

∣∣∣ ≤ Cε′t−
3
2 ≤ C

k

�
t−

3
2 ε, (3.6)

where C depends on the constants a, b in (1.1).
Therefore, by(3.3), (3.5) and (3.6), we find

|λ+
k,t,ε − λ+

k,t,0| = |c−2
ε λ

mε′ ,tnε′ ,[0,1]
2 − c−2

0 λ
m0,tn0,[0,1]
2 |

≤ c−2
ε |λmε′ ,tnε′ ,[0,1]

2 − λ
m0,tn0,[0,1]
2 | + λ

m0,tn0,[0,1]
2 |c−2

ε − c−2
0 |

≤ C

(
k

�

)3

t−
3
2 ε + λ

m0,tn0,[0,1]
2 |c−2

ε − c−2
0 |.

Now, from Corollary 3.5 and the subsequent remark,

|c−2
ε − c−2

0 | ≤ C

(
k

�

)3

ε,

with C a universal constant.
Finally, we observe that from Theorem 2.3,

λ
m0,tn0,[0,1]
2 = λ

m0,I+
1,ε

1 =
π2

m0|I+1,ε|2
≤ Ct,

with C depending on a, b in (1.1). �
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